EL SEVIER

Contents lists available at SciVerse ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

N-n-Butyl haloperidol iodide inhibits the augmented Na $^+$ /Ca $^{2+}$ exchanger currents and L-type Ca $^{2+}$ current induced by hypoxia/reoxygenation or H $_2$ O $_2$ in cardiomyocytes

Yongpan Huang ^a, Fenfei Gao ^a, Yanmei Zhang ^a, Yicun Chen ^a, Bin Wang ^a, Yanshan Zheng ^a, Ganggang Shi ^{a,b,*}

ARTICLE INFO

Article history: Received 13 March 2012 Available online 2 April 2012

Keywords: N-n-butyl haloperidol iodide Na⁺/Ca²⁺ exchanger currents L-type Ca²⁺ current Ventricular myocytes Patch-clamp techniques

ABSTRACT

N-n-butyl haloperidol iodide (F_2), a novel quaternary ammonium salt derivative of haloperidol, was reported to antagonize myocardial ischemia/reperfusion injuries. To investigate its mechanisms, we characterized the effects of F_2 on Na^+/Ca^{2^+} exchanger currents (I_{NCX}) and the L-type Ca^{2^+} channel current ($I_{Ca,L}$) of cardiomyocytes during either hypoxia/reoxygenation or exposure to H_2O_2 . Using whole-cell patch-clamp techniques, the I_{NCX} and $I_{Ca,L}$ were recorded from isolated rat ventricular myocytes. Exposure of cardiomyocytes to hypoxia/reoxygenation or H_2O_2 enhanced the amplitude of the inward and outward of I_{NCX} and $I_{Ca,L}$. F_2 especially inhibited the outward current of Na^+/Ca^{2^+} exchanger, as well as the $I_{Ca,L}$, in a concentration-dependent manner. F_2 inhibits cardiomyocyte I_{NCX} and $I_{Ca,L}$ after exposure to hypoxia/reoxygenation or H_2O_2 to antagonize myocardial ischemia/reperfusion injury by inhibiting Ca^{2^+} overload.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Ischemic heart disease is the leading cause of morbidity and mortality worldwide. Subsequent reperfusion of acutely ischemic myocardium is essential for myocardial rescue, but also leads to a unique type of injury known as myocardial ischemia/reperfusion (I/R) injury [1]. Such an injury is often related to endothelial and microvascular dysfunction, impaired blood flow, metabolic dysfunction, and cellular necrosis [2], and its mechanism is associated with cytosolic and mitochondrial calcium overload, release of reactive oxygen species (ROS), and an acute inflammatory response [3,4]. As one of the important mechanisms of I/R injury, much research has focused on the precise intracellular signaling pathways and elements responsible for calcium overload in ischemia/reperfusion. Ca²⁺ influx via both activation of L-type calcium channel and reversal of the Na⁺/Ca²⁺ exchanger (NCX) have been reported to occur in cardiocytes following I/R [1,5,6]. Simultaneously, ROS, including superoxide radicals, hydroxyl radicals, and oxidants such as H₂O₂ are generated in significant amounts

E-mail addresses: yongpanhuangxy@yahoo.cn, ggshi@stu.edu.cn (G. Shi).

during reperfusion and could contribute to intracellular Ca²⁺ overload in the heart through reversal or inhibition of the NCX [7,8]. Calcium overload may lead to deleterious consequences such as stunning, apoptosis, and necrosis, which contribute to infarct formation [9–12]. Due to the pivotal role of calcium overload in I/R injury, attenuation of cellular calcium overload remains an important therapeutic goal.

N-n-butyl haloperidol iodide, a novel quaternary ammonium salt derivative of haloperidol, was found to maintain the cardiac and vascular effects without adverse extrapyramidal reactions. Our previous studies showed that F2 could block L-type calcium channels in ventricular myocytes under physiological conditions [13-15]. Subsequently, we demonstrated that F2 could antagonize myocardial I/R injury in different animal models [13,16]. So, we inferred that the mechanism by which F₂ antagonizes myocardial I/R injury might be related to the inhibition of Ca²⁺ overload via suppression of cardiomyocyte Na⁺/Ca²⁺ exchanger (I_{NCX}) currents and L-type Ca²⁺ channel $(I_{Ca,L})$ during I/R. In this study, we established a model of cardiomyocyte hypoxia/reoxygenation (H/R) and exposure to H2O2, to simulate heart I/R conditions, and characterized the changes of I_{NCX} and $I_{Ca,L}$ during H/R and exposure to H₂O₂. We further characterized the effects of F_2 on I_{NCX} and $I_{Ca,L}$ during H/R and exposure to H_2O_2 to elucidate the mechanisms and ability of F2 to block myocardial I/R

^a Department of Pharmacology, Shantou University Medical College, Shantou, China

^b Department of Cardiovascular Diseases, First Affiliated Hospital, Shantou University Medical College, Shantou, China

^{*} Corresponding author at: Department of Pharmacology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China. Fax: +86 754 88557562.

2. Materials and methods

2.1. Cell isolation

Adult male Sprague–Dawley rats (180–250 g) were obtained from the Laboratory Animal Breeding and Research Center of Shantou University Medical College. The investigation was in compliance with the *Guide for the Care and Use of Laboratory Animals* published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). Cardiomyocytes were isolated by collagenase type 2 and protease (Sigma, Type XIV) perfusion as previously described [15,17]. All experiments were performed at 37 \pm 0.5 °C. Cardiac ventricular tissue was cut into small pieces. Single myocytes were harvested and stored at 4 °C and the myocytes were used for experiments within 6 h.

2.2. Patch clamp recordings

Membrane currents were recorded by whole cell patch-clamp method using pCLAMP 8.2 software (Axon Instruments, Foster City, CA, USA). Single cardiac ventricular cells were placed in a 1 ml recording chamber attached to an inverted microscope (OLYMPUS, Tokyo) and were perfused with Tyrode solution at a rate of 1 ml/min. The temperature of the bath solution was maintained at room temperature (22–25 °C). Patch pipettes were forged from 1.5-mm-diameter glass capillaries with a two-stage microelectrode puller (pp-83; Narishige Scientific Instrument Lab, Tokyo). Pipette resistance was 2–4 $M\Omega$ when filled with the pipette solution. The electrode was connected to a patch-clamp amplifier (Axopatch-200B, Axon Instruments, Foster City, CA, USA). Recording signals were filtered at 2.5 kHz bandwidth.

2.3. Measurement of I_{NCX}

After establishing the whole-cell configuration in Tyrode solution, the cell was perfused with a special K⁺-free bath solution (140 mM NaCl, 2 mM CaCl₂, 1 mM MgCl₂, and 10 mM HEPES, pH 7.2). To block Na⁺/K⁺ pump currents and currents flowing through K⁺ or Ca²⁺ channels, 0.02 mM ouabain, 2 mM CsCl and 0.01 mM nifedipine were added to the solution. After recording the control current, the external solution was switched from the special K⁺free bath solution to the simulated hypoxic solution including 0.02 mM ouabain, 2 mM CsCl and 0.01 mM nifedipine. The pipette solution contained 120 mM CsOH, 50 mM aspartic acid, 20 mM NaCl, 10 mM CaCl₂ (free Ca²⁺ concentration 226 nM), 20 mM BAP-TA, 3 mM MgCl₂, 5 mM Mg ATP, and 10 mM HEPES, pH 7.2). The ramp pulse was initially depolarized from a holding potential of -60 to +60 mV, then hyperpolarized to -150 mV, and depolarized back to the holding potential at a speed of 680 mV/s [18]. The descending limb of the ramp was used to plot current-voltage (I-V) curves without capacitative current compensation. I_{NCX} was identified as a Ni²⁺-sensitive current because 5 mM Ni²⁺ selectively inhibits I_{NCX} under these ionic conditions and the Ni²⁺-insensitive current was not affected by H/R.

2.4. Measurement of $I_{Ca,L}$

 $I_{\rm Ca,L}$ was recorded using a whole-cell patch clamp configuration. The pipette solution contained 150 mM CsCl, 15 mM EGTA, 1 mM MgCl₂, 5 mM MgATP, and 5 mM HEPES, adjusted to pH 7.2 with CsOH). After establishing a high resistance seal by gentle suction, the cell membrane beneath the tip of the electrode was disrupted by further suction to obtain the whole-cell patch-clamp configuration. $I_{\rm Ca,L}$ was elicited by 300 ms pulses to potentials ranging from -30 to +70 mV in 10 mV increments from a holding potential of

 $-40~\mathrm{mV}$ (to inactivate I_{Na} and T-type $\mathrm{Ca^{2^+}}$ currents) at 0.2 Hz [15]. Peak outward K+ current (I_{to}) was suppressed by 3 mM 4-aminopyridine added to Tyrode solution. Representative current traces and the I-V relationships were obtained from a ventricular myocyte.

2.5. H/R model

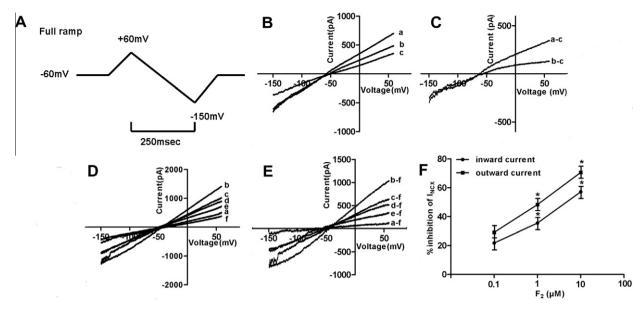
H/R conditions were induced by switching the Tyrode solution to the hypoxic solution and then to control extracellular solution. After perfusing with normal Tyrode solution, to mimic hypoxic conditions, isolated ventricular cardiac myocytes were perfused for 15-min with the simulated hypoxic solution (123 mM NaCl, 6 mM NaHCO₃, 0.9 mM NaH₂PO₄, 8 mM KCl, 0.5 mM MgSO₄, 2.5 mM CaCl₂, and 20 mM sodium lactate, pH 6.8; gassed with 90% N₂-10% CO₂) [19–21]. The method is convenient and severe enough to produce an H/R single cell model. Perfusion with buffer was controlled by gravity to maintain a flow rate of 6 ml/min.

2.6. Drugs

 F_2 (synthesized by our lab and assayed by the Shanghai Organic Chemistry Institute of the Chinese Academy of Sciences; purity greater than 98%) was prepared as a 0.1 M stock solution in DMSO and diluted to the desired drug concentration with extracellular solution before each experiment. A DMSO of less than 0.1% did not affect the $I_{\rm NCX}$ and $I_{\rm Ca,L}$ at the highest F_2 concentration used. Ouabain, nifedipine, CsCl, HEPES, and BAPTA were purchased from the Sigma Chemical Co., St. Louis, MO. All chemicals used were the highest grade available.

2.7. Analysis of statistics

All values presented are arithmetic means \pm SEM. Statistical significance was determined using a paired Students' t-test. Differences were considered significant when the P value was less than 0.05.


3. Results

3.1. F_2 reduces both outward and inward I_{NCX} under physiological conditions

Bi-directional I_{NCX} was induced by 1 mM Ca²⁺ and 140 mM Na⁺ in the external solution and 20 mM Na⁺ and 226 nM free Ca²⁺ in the pipette solution. Under these ionic conditions, following establishment of the whole-cell clamp configuration, the external solution was switched from the control external solution to Tyrode solution, while monitoring the increase in current until a steady state was reached. I_{NCX} was recorded under conditions in which we selectively blocked various ion channel currents, such as Na⁺/K⁺ pump currents, K+ current, sarcoplasmic reticulum Ca2+ release channels, and Ca²⁺ currents. After recording the control current, 1.0 μM F₂ was added to the extracellular solution. Upon stabilization of current, 5 mM Ni²⁺, a selective NCX inhibitor under these ionic conditions, was added to the extracellular solution to block I_{NCX} (Fig. 1B and C). F_2 inhibited outward I_{NCX} at +60 mV by $39.51 \pm 2.62\%$ (n = 4) and inward I_{NCX} at $-150 \,\text{mV}$ by $10.68 \pm$ 0.62% (n = 4).

3.2. F_2 inhibits I_{NCX} during H/R

To examine the effect of F_2 on I_{NCX} during H/R, current traces were recorded in the presence and absence of H/R exposure and with and without F_2 . The I-V relationship recorded in the presence

Fig. 1. Effect of F_2 on I_{NCX} . (A) Shape of a "full" ramp pulse. The holding potential is -60 mV. (B) I-V curves of control (a), in the presence of F_2 1.0 μM (b), and 5 mM Ni²⁺ (c). (C) I-V curves of net Ni²⁺-sensitive currents obtained by subtracting the corresponding I-V curves in panel B. (D) Current–voltage relationship before control (a) and after H/R (b), respectively. Trace c, d, e, and f after application of F_2 and Ni²⁺, respectively (n = 13). (E) Difference between the I and V curves in panel D. (F) Concentration–response relationships of the inhibitory effect of F_2 on NCX currents. The outward current was achieved at +60 mV, inward current was achieved at -150 mV.

of F_2 intersected with the control I-V curve at -60 mV. After the effect of F_2 reached a steady state, 5 mM Ni²⁺ was applied to completely block I_{NCX} . Fig. 1D and E illustrates the net I-V curves with 5 mM Ni²⁺ from those before and after F_2 application. The percent inhibition of F_2 on outward and inward currents was determined at +60 mV to be $29.18 \pm 2.49\%$, $53.38 \pm 5.01\%$, and $70.68 \pm 3.93\%$, and at -150 mV to be $21.83 \pm 1.58\%$, $38.56 \pm 5.52\%$, and $57.25 \pm 7.39\%$ (n = 9) (P < 0.05). Percent inhibition was calculated assuming that 5 mM Ni²⁺ completely inhibited each direction of I_{NCX} . Therefore, F_2 inhibited the H/R-induced increase in I_{NCX} , and inhibition was greater for the outward current compared to the level of inhibition of the inward current.

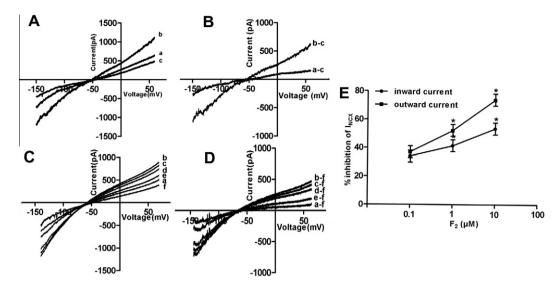
3.3. F_2 blocks the H_2O_2 -induced I_{NCX} increases in inward and outward currents

In order to test whether H_2O_2 regulates I_{NCX} , we established the whole-cell clamp configuration, then switched the external solution from the control external solution to Tyrode solution with 100 µM H₂O₂ and monitored the increase in current until it reached a steady state. Immediately after cells were exposed to H₂O₂, the current began to increase. When current peaked, 5 mM Ni^{2+} was added to the extracellular solution to block I_{NCX} . H_2O_2 at 100 μ M increased outward I_{NCX} at +60 mV by 91.61 ± 10.55% (n = 9) and inward I_{NCX} at -150 mV by $58.33 \pm 4.18\%$ (n = 9)(Fig. 2A and B). Thus, we investigated the effects of F2 on H2O2induced increases in I_{NCX} (Fig. 2C and D). F_2 (0.1, 1.0, 10 μ M) caused a decrease in I_{NCX} and inhibited the outward I_{NCX} to a greater extent than the inward current in a concentration-dependent manner (Fig. 2D and E) outward $I_{\rm NCX}$ at +60 mV by 37.17 ± 7.45%, 56.16 ± 7.54%, 73.81 \pm 7.13% (n = 5) and inward I_{NCX} at -150 mV by $34.23 \pm 9.19\%$, $41.48 \pm 8.72\%$, $53.54 \pm 10.10\%$ (n = 5) (P < 0.05). Similar to results obtained with H/R, F₂-mediated inhibition of I_{NCX} was greater for the outward current.

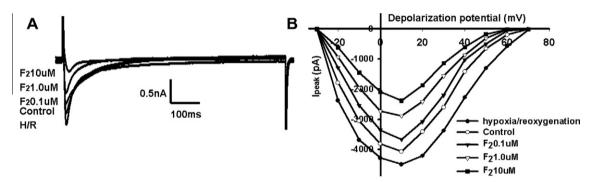
3.4. F₂ inhibits H/R-induced I_{Ca,L}

To activate $I_{Ca,L}$, we delivered 300 ms pulses to potentials ranging from -30 to +70 mV in 10 mV increments from a holding

potential of -40 mV (to inactivate $I_{\rm Na}$ and T-type ${\rm Ca}^{2+}$ current) at 0.2 Hz. The peak $I_{\rm Ca,L}$ was elicited at the potential of +10 mV. Fig. 3 shows a typical trace of $I_{\rm Ca,L}$ during H/R. Representative current traces obtained from a ventricular myocyte and the current-voltage relationships in the absence and presence of F_2 are shown. The $I_{\rm Ca,L}$ amplitude increased by $15.89 \pm 3.22\%$, then decreased progressively during perfusion with F_2 over the perfusion period. F_2 inhibited $I_{\rm Ca,L}$ by $44.35 \pm 5.52\%$, $61.06 \pm 2.99\%$, and $71.88 \pm 4.45\%$ at concentrations of 0.1, 1.0 and $10~\mu{\rm M}$, respectively. F_2 shifted the current–voltage curve of $I_{\rm Ca,L}$ upward, without affecting the voltage-dependent properties of $I_{\rm Ca,L}$


3.5. F_2 inhibits the H_2O_2 -induced $I_{Ca,L}$ increase

To examine the effect of F_2 on the voltage-dependent $I_{Ca,L}$ exposure to H_2O_2 . Ventricular myocytes were superfused with H_2O_2 and the $I_{Ca,L}$ was recorded under a whole cell configuration. Fig. 4 shows the effects of F_2 on the H_2O_2 -induced $I_{Ca,L}$ increase. H_2O_2 induced an increase in inward current. Fig. 4A shows the I-V relationships measured using the peak inward current. H_2O_2 did not significantly change the 33.65 \pm 1.90% increase in magnitude of the peak current. However, "rundown" of calcium currents is always a concern in whole-cell patch-clamp recordings. In our study, conventional whole-cell recording with ATP and EGTA in the patch-pipette led to stable recordings of L-type currents. The $I_{Ca,L}$ amplitude decreased progressively during perfusion with F_2 over the perfusion period. F_2 , at concentrations of 0.1, 1.0 and 10 μ M, inhibited H_2O_2 -mediated increases in $I_{Ca,L}$ amplitude by 37.50 \pm 2.81%, 54.83 \pm 2.93%, and 70.21 \pm 2.03%, respectively.


4. Discussion

The present study demonstrated that exposure to either H/R or to H_2O_2 increased both I_{NCX} and $I_{Ca,L}$ in cardiomyocytes, and that F_2 could inhibit these increases in a concentration-dependent manner during H/R or exposure to H_2O_2 . This is maybe the mechanism of F_2 to inhibit Ca^{2+} overload and antagonize myocardial I/R injury.

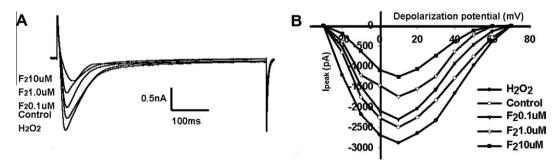

NCX is an important regulator in maintaining Ca²⁺ homeostasis and is responsible for Ca²⁺ removal from the cytoplasm. Under

Fig. 2. Effect of F_2 on the I_{NCX} increase caused by 100 μM H_2O_2 . (A) I-V curves of control (a), in the presence of 100 μM H_2O_2 (b) and 5 mM Ni^{2^+} (c). (B) I-V curves of net Ni^{2^+} sensitive currents obtained by subtracting the corresponding I-V curves in panel A. (C) I-V curves of control (a), in the presence of 100 μM H_2O_2 (b) and 0.1 μM, 1 μM and 10 μM F_2 (c, d, e), 5 mM Ni^{2^+} (f). (D) I-V curves of net Ni^{2^+} -sensitive currents obtained by subtracting the corresponding I-V curves in panel C. (E) Concentration–response relationships of the inhibitory effect of F_2 on NCX currents. The outward current was achieved at +60 mV, inward current was achieved at -150 mV (n=9).

Fig. 3. Effect of F_2 on $I_{Ca,L}$ during H/R. (A) The original recordings of $I_{Ca,L}$ under control conditions, H/R, and after superfusion with F_2 . (B) I-V relationship for $I_{Ca,L}$ in rat ventricular myocytes (n = 7).

Fig. 4. Effect of F_2 on $I_{Ca,L}$ during H_2O_2 exposure. (A) The original recordings of $I_{Ca,L}$ under control conditions, H_2O_2 exposure and after superfusion with F_2 . (B) I-V relationship for $I_{Ca,L}$ in rat ventricular myocytes (n = 10).

physiological states, the primary function of NCX is the extrusion of Ca²⁺ during diastole. During hypoxemia, anaerobic metabolism results in intracellular acidosis, which activates Na⁺/H⁺ exchanger to extrude H⁺ in exchange for an influx of Na⁺. Upon reoxygenation, loss of extracellular H⁺ establishes an outward transsarcolemmal H⁺ gradient, causing further extrusion of H⁺ in exchange for Na⁺, and leading to higher intracellular Na⁺ levels. The subsequent elevation in intracellular Na⁺ promotes an increase Ca²⁺ influx into the cytosol via reverse mode of Na⁺/Ca²⁺ exchange, resulting in calcium overload [22]. This is thought to be the principal mechanism of

calcium overload induced by I/R. In the present study, treatment with 0.1, 1.0, or 10 μ M F $_2$ during H/R reduced the I_{NCX} , especially the outward component of I_{NCX} in a concentration-dependent manner. This would account for the cardioprotection of F $_2$ from I/R injury.

We have found that hypoxia enhanced the $I_{\text{Ca,L}}$ amplitude of cardiomyocytes (data not shown). During H/R, entry of calcium through the L-type calcium channels was further augmented, which might be connected with changes in membrane depolarization and opening of voltage sensitive L-type Ca²⁺ channel [6]. These

changes promote calcium overload in myocardial I/R. We found that F_2 could also reduce $I_{Cal.}$ in a concentration-dependent manner during H/R, which provides an additional mechanism for F₂ in the regulation of calcium homeostasis.

As we know, large amounts of ROS, such as H₂O₂, are produced primarily during reperfusion and contribute to myocardial injury. H₂O₂ plays an important role in the pathogenesis of H/R injury and could induce intracellular dysfunction via several signaling pathways. For example, H₂O₂ induces cell apoptosis through signaling pathways mediated by extracellular signal-regulated kinases, protein kinase C, Janus protein kinase, and nuclear factor kB [23]. Our studies show that H₂O₂ causes reversal of NCX activity, resulting in calcium influx, in close agreement with previous studies [24-27]. Activation of the NCX increases intracellular Ca^{2+} concentrations, giving rise to calcium overload. F_2 inhibits I_{NCX} after exposure to H₂O₂, with the outward current of NCX being decreased more than the inward current. Meanwhile, we found that exposure of cardiomyocytes to H₂O₂ alters the function of Ltype calcium channel, which leads to a pronounced elevation in I_{Cal} consistent with previous studies [28,29]. These combined synergistic interactions would further accelerate calcium overload and dysfunction of Ca²⁺ homeostasis, ultimately resulting in I/R injury. Treatment with F_2 also decreased the enhancement of $I_{Ca,L}$ in a concentration-dependent manner. These results indicate that the inhibition of I_{NCX} and $I_{Ca.L}$ by F_2 could prevent the calcium overload and further attenuate the myocardial injury.

In conclusion, improved efficacy with the use of F₂ in protecting against H/R-mediated calcium overload can be attributed to the combined effects of inhibition of I_{NCX} and $I_{Ca,L}$. F_2 , a novel quaternary ammonium salt derivative of haloperidol, has a chemical structure different from other typical Ca²⁺ channel blockers, yet produces strong effects on cardiac dysfunction. Thus F2 may be a promising drug for the treatment of cardiac dysfunction and improvement of cardiac recovery.

Acknowledgments

This work was supported by National Natural Science Foundation of China Guangdong Joint Funds (No. U0932005), the National Natural Science Foundation of China (No. 81173048 and 81072633), the Research Fund for the Doctoral Program of Higher Education of China (No. 200805600003), the Natural Science Foundation of Guangdong Province of China (No. 07008206).

References

- [1] M.A. Talukder, J.L. Zweier, M. Periasamy, Targeting calcium transport in ischaemic heart disease, Cardiovasc. Res. 84 (2009) 345-352.
- [2] Z.Q. Zhao, J. Vinten-Johansen, Postconditioning: reduction of reperfusioninduced injury, Cardiovasc. Res. 70 (2006) 200-211.
- [3] M.T. Dirksen, G.J. Laarman, M.L. Simoons, D.J. Duncker, Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies, Cardiovasc. Res. 74 (2007) 343-355.
- [4] J. Xiong, F.S. Xue, Y.J. Yuan, Q. Wang, X. Liao, W.L. Wang, Cholinergic antiinflammatory pathway: a possible approach to protect against myocardial ischemia reperfusion injury, China Med. J. (Engl.) 123 (2010) 2720-2726.
- [5] H.R. Cross, L. Lu, C. Steenbergen, K.D. Philipson, E. Murphy, Overexpression of the cardiac Na⁺/Ca²⁺ exchanger increases susceptibility to ischemia/

- reperfusion injury in male, but not female, transgenic mice, Circ. Res. 83 (1998) 1215-1223
- [6] D. Bagchi, G.J. Wetscher, M. Bagchi, P.R. Hinder, G. Perdikis, S.J. Stohs, R.A. Hinder, D.K. Das, Interrelationship between cellular calcium homeostasis and free radical generation in myocardial reperfusion injury, Chem. Biol. Interact. 104 (1997) 65-85.
- [7] T.D. Henry, S.L. Archer, D. Nelson, E.K. Weir, A.H. From, Enhanced chemiluminescence as a measure of oxygen-derived free radical generation during ischemia and reperfusion, Circ. Res. 67 (1990) 1453-1461.
- R. Ferrari, C. Ceconi, S. Curello, O. Alfieri, O. Visioli, Myocardial damage during
- ischaemia and reperfusion, Eur. Heart J. 14 (Suppl. G) (1993) 25–30. [9] M. Tani, J.R. Neely, Role of intracellular Na⁺ in Ca²⁺ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H⁺-Na⁺ and Na⁺-Ca²⁺ exchange, Circ. Res. 65 (1989) 1045–
- [10] M. Tani, Mechanisms of Ca2+ overload in reperfused ischemic myocardium, Annu. Rev. Physiol. 52 (1990) 543-559.
- [11] S. Orrenius, B. Zhivotovsky, P. Nicotera, Regulation of cell death: the calciumapoptosis link, Nat. Rev. Mol. Cell Biol. 4 (2003) 552-565.
- [12] H.M. Piper, K. Meuter, C. Schafer, Cellular mechanisms of ischemiareperfusion injury, Ann. Thorac. Surg. 75 (2003) S644-648.
- [13] Z.Q. Huang, G.G. Shi, J.H. Zheng, B. Liu, Effects of N-n-butyl haloperidol iodide on rat myocardial ischemia and reperfusion injury and L-type calcium current, Acta Pharmacol. Sin. 24 (2003) 757-763.
- [14] Z. Huang, G. Shi, F. Gao, Y. Zhang, X. Liu, T.A. Christopher, B. Lopez, X. Ma, Effects of N-n-butyl haloperidol iodide on L-type calcium channels and intracellular free calcium in rat ventricular myocytes, Biochem. Cell Biol. 85 (2007) 182-188.
- [15] F.F. Gao, S.Y. Hao, Z.Q. Huang, Y.M. Zhang, Y.Q. Zhou, Y.C. Chen, X.P. Liu, G.G. Shi, Cardiac electrophysiological and antiarrhythmic effects of N-n-butyl haloperidol iodide, Cell Physiol. Biochem. 25 (2010) 433-442.
- [16] F.F. Gao, G.G. Shi, J.H. Zheng, B. Liu, Protective effects of N-n-butyl haloperidol iodide on myocardial ischemia-reperfusion injury in rabbits, China J. Physiol. 47 (2004) 61-66.
- [17] K. Yazawa, M. Kaibara, M. Ohara, M. Kameyama, An improved method for isolating cardiac myocytes useful for patch-clamp studies, Jpn. J. Physiol. 40 (1990) 157-163.
- [18] J. Kimura, T. Watano, M. Kawahara, E. Sakai, J. Yatabe, Direction-independent block of bi-directional Na⁺/Ca²⁺ exchange current by KB-R7943 in guinea-pig cardiac myocytes, Br. J. Pharmacol. 128 (1999) 969-974.
- J. Wang, Z. Zhang, Y. Hu, X. Hou, Q. Cui, Y. Zang, C. Wang, SEA0400, a novel Na+/ Ca2+ exchanger inhibitor, reduces calcium overload induced by ischemia and reperfusion in mouse ventricular myocytes, Physiol. Res. 56 (2007) 17-23.
- [20] J.M. Cordeiro, S.E. Howlett, G.R. Ferrier, Simulated ischaemia and reperfusion in isolated guinea pig ventricular myocytes, Cardiovasc. Res. 28 (1994) 1794-
- [21] J.D. O'Brien, J.H. Ferguson, S.E. Howlett, Effects of ischemia and reperfusion on isolated ventricular myocytes from young adult and aged Fischer 344 rat hearts, Am. J. Physiol. Heart Circ. Physiol. 294 (2008) H2174-2183.
- [22] C. Lee, N.S. Dhalla, L.V. Hryshko, Therapeutic potential of novel Na+-Ca2+ exchange inhibitors in attenuating ischemia-reperfusion injury, Can. I. Cardiol. 21 (2005) 509-516.
- [23] J.L. Martindale, N.J. Holbrook, Cellular response to oxidative stress: signaling for suicide and survival, J. Cell Physiol. 192 (2002) 1-15.
- [24] J.I. Goldhaber, Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes, Am. I. Physiol, 271 (1996) H823-833.
- [25] M. Hinata, I. Matsuoka, T. Iwamoto, Y. Watanabe, J. Kimura, Mechanism of Na+/Ca2+ exchanger activation by hydrogen peroxide in guinea-pig ventricular myocytes, J. Pharmacol. Sci. 103 (2007) 283–292.
- [26] B.N. Eigel, H. Gursahani, R.W. Hadley, ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes, Am. J. Physiol. Heart Circ. Physiol. 286 (2004) H955-963.
- [27] D. Soliman, K.S. Hamming, L.C. Matemisz, P.E. Light, Reactive oxygen species directly modify sodium-calcium exchanger activity in a splice variantdependent manner, J. Mol. Cell Cardiol. 47 (2009) 595-602.
- [28] J. Guo, W.R. Giles, C.A. Ward, Effect of hydrogen peroxide on the membrane currents of sinoatrial node cells from rabbit heart, Am. J. Physiol. Heart Circ. Physiol, 279 (2000) H992-999.
- G.P. Thomas, S.M. Sims, M.A. Cook, M. Karmazyn, Hydrogen peroxide-induced stimulation of L-type calcium current in guinea pig ventricular myocytes and its inhibition by adenosine A1 receptor activation, J. Pharmacol. Exp. Ther. 286 (1998) 1208-1214.